
Cray Performance Tools
Heidi Poxon

Sr. Principal Engineer
Cray, Inc.

© 2019 Cray Inc.

Legal Disclaimer
Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

2

© 2019 Cray Inc.

• Improve your familiarity with the Cray performance tools
• Add to your bag of tricks for analyzing code behavior

• Practice
• The mechanics of using Cray performance tools
• Learn how to identify problem areas and learn which experiment to use when

Focus

3

© 2019 Cray Inc.

Do Not Assume You Know Your Application Profile

4

© 2019 Cray Inc.

• Profile your working application
• On the problem of interest at the scale of interest

• Don’t think you know where the problem is and more importantly why it’s the
most important bottleneck in the program

• Performance on a single node is not necessarily representative of
performance on 1000 nodes

General Profiling Tips

5

© 2019 Cray Inc.

• Which is dominant: computation or data movement and where?

• What size messages are frequently used in this program?

• Is the program suffering from load imbalance and if so, where?

• What is the percent of peak memory bandwidth achieved?

• Is there any insight from the tool on the performance data collected?

6

© 2019 Cray Inc.

Cray Performance Tools
• Reduce the time investment

associated with porting and tuning
applications on Cray systems

• Analyze whole-program behavior
across many nodes to identify critical
performance bottlenecks within a
program

• Improve profiling experience by using
simple and/or advanced interfaces for
a wealth of capability that targets
analyzing the largest HPC jobs

7

© 2019 Cray Inc.

• perftools-base provides access to pat_run, Reveal, Apprentice2, pat_report,
and man pages without modification to applications

• perftools-base is often loaded by default (check your systems)

• Load an instrumentation module to collect performance data

Accessing perftools Software

Examples:

$ module load perftools-lite
$ module load perftools

8

© 2019 Cray Inc.

• CrayPat-lite: simple interface for convenience

• CrayPat: advanced interface for in-depth performance investigation and tuning
assistance

• Both offer:
• Whole program analysis across many nodes
• Indication of causes of problems
• Ability to easily switch between the two interfaces

Two Modes of Use

Load module, build program, run, report generated to stdout

Cray Performance
Tools have profiled

production applications
with over 256,000 MPI

ranks

9

© 2019 Cray Inc.

Cray Performance Tools support the following compilers

• Cray (CCE), Intel, GCC, and Arm Allinea compilers on Cray XC systems

• Cray (CCE) compiler on Cray CS systems

What About Different Compilers?

10

© 2019 Cray Inc.

• user@login> module load perftools-lite

• Build program

• Run program

• View report sent to STDOUT (and .rpt file in experiment directory)
• Example data directory: stencil_order+49144-225s/

Using the Simple Interface

11

© 2019 Cray Inc.

• Easily access performance data

• Unique directory name for each experiment

• Based on program name + unique number + ‘s’ or ‘t’
• vhone+73030-20s: program vhone with ‘s’ for sampling
• user@login> pat_report expdir > full_report

• user@login> app2 vhone+73030-20s

• Example directory:
• user@login> ls vhone+73030-20s

ap2-files/ index.ap2 rpt-files/ xf-files/

Consolidated Performance Data

12

© 2019 Cray Inc.

• Job summary
• Application performance summary
• Profiles showing slowest code in application
• Key bottlenecks such as load imbalance
• Memory footprint and bandwidth
• Time spent performing I/O and Lustre file information
• Application energy and power usage
• Observations about application behavior

Application Performance Information

13

© 2019 Cray Inc.

CrayPat/X: Version 7.0.1 Revision 3714888 03/07/18 02:11:13
Experiment: lite lite/sample_profile
Number of PEs (MPI ranks): 36
Numbers of PEs per Node: 36
Numbers of Threads per PE: 1
Number of Cores per Socket: 18
Execution start time: Thu Mar 15 11:14:05 2018
System name and speed: nid00030 2.101 GHz (nominal)
Intel Broadwell CPU Family: 6 Model: 79 Stepping: 1

Avg Process Time: 3.70 secs
High Memory: 1,801.4 MBytes 50.0 MBytes per PE
Observed CPU clock boost: 117.2 %
Percent cycles stalled: 38.3 %
Vector intensity (packed instr): 2.6 %
Instr per Cycle: 1.51
I/O Read Rate: 3.676263 MBytes/sec
I/O Write Rate: 0.293086 MBytes/sec

Example: perftools-lite Job Summary

14

© 2019 Cray Inc.

Table 1: Profile by Function Group and Function (top 10 functions shown)
Samp% | Samp | Imb. | Imb. |Group

| | Samp | Samp% | Function
| | | | PE=HIDE

100.0% | 55,605.7 | -- | -- |Total
|---
| 56.5% | 31,412.8 | -- | -- |USER
||--
|| 19.7% | 10,944.1 | 290.9 | 2.6% |create_boundary$boundary_
|| 10.7% | 5,937.8 | 214.2 | 3.5% |get_block$blocks_
|| 3.9% | 2,194.4 | 7.6 | 0.3% |create_distrb_balanced$distribution_
|| 2.0% | 1,135.5 | 137.5 | 10.8% |impvmixt$vertical_mix_
|| 1.9% | 1,064.8 | 124.2 | 10.5% |impvmixt_correct$vertical_mix_
||==
| 22.5% | 12,513.4 | -- | -- |ETC
||--
|| 20.1% | 11,151.4 | 2,758.6 | 19.9% |__cray_memcpy_KNL
||==
| 20.7% | 11,503.5 | -- | -- |MPI
||--
|| 11.1% | 6,171.6 | 1,785.4 | 22.5% |MPI_ALLREDUCE
|| 7.9% | 4,377.8 | 3,254.2 | 42.7% |mpi_waitall

Example: perftools-lite Top Time Consumers

15

© 2019 Cray Inc.

MPI Grid Detection:
There appears to be point-to-point MPI communication in a 32 X 32
grid pattern. The 20.7% of the total execution time spent in MPI
functions might be reduced with a rank order that maximizes
communication between ranks on the same node. The effect of several
rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this
report and contains usage instructions and the Hilbert rank order
from the following table.

Rank Order On-Node On-Node MPICH_RANK_REORDER_METHOD
Bytes/PE Bytes/PE%

of Total
Bytes/PE

Hilbert 1.413e+12 81.94% 3
SMP 1.053e+12 61.04% 1
Fold 9.405e+11 54.53% 2

RoundRobin 8.962e+11 51.96% 0

Example: perftools-lite Observations

16

© 2019 Cray Inc.

Table 3: Profile by Group, Function, and Line
Samp% | Samp | Imb. | Imb. | Group

| | Samp | Samp% | Function
| | | | Source
| | | | Line
| | | | PE=HIDE

100.0% | 60,665.8 | -- | -- | Total
|---
| 94.6% | 57,390.6 | -- | -- | USER
||--
|| 82.1% | 49,835.3 | -- | -- | LAMMPS_NS::PairLJCut::compute
|||---
3|| 80.7% | 48,970.1 | -- | -- | src/Obj_xc30intel/../pair_lj_cut.cpp
||||--
4||| 3.9% | 2,359.8 | 100.2 | 4.1% | line.102
4||| 1.0% | 596.2 | 61.8 | 9.5% | line.105
4||| 8.3% | 5,022.4 | 683.6 | 12.1% | line.107
4||| 2.9% | 1,744.2 | 966.8 | 36.0% | line.108

Example: perftools-lite Hot Spots by Line

17

© 2019 Cray Inc.

Table 5: File Input Stats by Filename
Read | Read | Read Rate | Reads | Bytes/ | File Name=!x/^/(proc|sys)/
Time | MiBytes | MiBytes/sec | | Call | PE=HIDE

0.249811 | 0.686758 | 2.749114 | 6,338.0 | 113.62 | Total
|---
| 0.225211 | 0.122314 | 0.543111 | 256.0 | 501.00 | clover.in.tmp
| 0.003741 | 0.003090 | 0.826022 | 220.0 | 14.73 | clover.in
|===

Example: File I/O Information

18

© 2019 Cray Inc.

Table 7: Lustre File Information

File Path | Stripe | Stripe | Stripe | OST list
| size | offset | count |

rationals_m001m05m5.test1 | 1,048,576 | 0 | 8 | 2,4,0,6,3,7,5,1

36x36x36x72.chklat | 1,048,576 | 0 | 8 | 1,2,4,0,6,3,7,5
===

Example: Lustre File Information

19

© 2019 Cray Inc.

Data Movement

20

© 2019 Cray Inc.

• user@login> module load perftools

• Build program
• It’s helpful to add –hlist=a when building with CCE for listing

• Instrument program, only focusing on MPI

• user@login> pat_build –g mpi ./my_program

• Run instrumented program (my_program+pat)

• Create report
• user@login> pat_report my_data_directory+12t/ > my_report

Focus on MPI Communication Bottlenecks

21

© 2019 Cray Inc.

MPI utilization:

The time spent processing MPI communications is relatively high.
Functions and callsites responsible for consuming the most time can
be found in the table generated by pat_report -O callers+src (within
the MPI group).

Guidance: How Can I Learn More?

22

© 2019 Cray Inc.

MPI | MPI Msg | MPI Msg | MsgSz | 4KiB<= |Function

Msg | Bytes | Count | <16 | MsgSz | Caller

Bytes% | | | Count | <64KiB | PE=[mmm]

| | | | Count |

100.0% | 34,940,767.4 | 8,771.9 | 258.6 | 8,513.3 |Total

|--

| 100.0% | 34,940,647.4 | 8,756.9 | 243.6 | 8,513.3 |MPI_ISEND

||---

|| 56.2% | 19,622,700.0 | 4,837.5 | 56.2 | 4,781.2 |calc2_

3| | | | | | shalow_

||||---

4||| 56.4% | 19,718,400.0 | 7,200.0 | 2,400.0 | 4,800.0 |pe.0

4||| 56.4% | 19,699,200.0 | 4,800.0 | 0.0 | 4,800.0 |pe.32

4||| 42.3% | 14,784,000.0 | 4,800.0 | 1,200.0 | 3,600.0 |pe.63

||||===

|| 42.5% | 14,851,950.0 | 3,693.8 | 75.0 | 3,618.8 |calc1_

3| | | | | | shalow_

||||---

4||| 56.4% | 19,718,400.0 | 7,200.0 | 2,400.0 | 4,800.0 |pe.0

4||| 42.3% | 14,774,400.0 | 3,600.0 | 0.0 | 3,600.0 |pe.31

4||| 42.3% | 14,774,400.0 | 3,600.0 | 0.0 | 3,600.0 |pe.62

Sort MPI Messages by Caller

23

© 2019 Cray Inc.

Analyzing MPI Message Sizes

Total

MPI Msg Bytes% 100.0%

MPI Msg Bytes 4,465,684,125.8

MPI Msg Count 13,057.0 msgs

MsgSz <16 Count 719.0 msgs

16<= MsgSz <256 Count 28.0 msgs

256<= MsgSz <4KiB Count 0.7 msgs

4KiB<= MsgSz <64KiB Count 279.8 msgs

64KiB<= MsgSz <1MiB Count 12,029.6 msgs

===

MPI_Send

MPI Msg Bytes% 100.0%

MPI Msg Bytes 4,465,680,353.8

MPI Msg Count 12,318.0 msgs

MsgSz <16 Count 8.0 msgs

16<= MsgSz <256 Count 0.0 msgs

256<= MsgSz <4KiB Count 0.7 msgs

4KiB<= MsgSz <64KiB Count 279.8 msgs

64KiB<= MsgSz <1MiB Count 12,029.6 msgs

MPI_Send / LAMMPS_NS::Comm::reverse_comm

MPI Msg Bytes% 48.6%

MPI Msg Bytes 2,171,466,150.3

MPI Msg Count 6,006.0 msgs

MsgSz <16 Count 0.0 msgs

16<= MsgSz <256 Count 0.0 msgs

256<= MsgSz <4KiB Count 0.0 msgs

4KiB<= MsgSz <64KiB Count 0.0 msgs

64KiB<= MsgSz <1MiB Count 6,006.0 msgs

===

MPI_Send / LAMMPS_NS::Comm::reverse_comm /
LAMMPS_NS::Verlet::run

MPI Msg Bytes% 48.6%

MPI Msg Bytes 2,169,218,110.3

MPI Msg Count 6,000.0 msgs

MsgSz <16 Count 0.0 msgs

16<= MsgSz <256 Count 0.0 msgs

256<= MsgSz <4KiB Count 0.0 msgs

4KiB<= MsgSz <64KiB Count 0.0 msgs

64KiB<= MsgSz <1MiB Count 6,000.0 msgs

24

© 2019 Cray Inc.

Load Imbalance

25

© 2019 Cray Inc.

Table 1: Profile by Function Group and Function
Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function
| | | | | PE=HIDE

100.0% | 1.957703 | -- | -- | 42,970.8 |Total
|--
| 60.0% | 1.174021 | -- | -- | 3,602.0 |USER
||---
|| 30.8% | 0.603850 | 0.176924 | 23.0% | 1,198.0 |function3_
|| 19.2% | 0.375117 | 0.128748 | 26.0% | 1,200.0 |function2_
|| 9.1% | 0.178111 | 0.081880 | 32.0% | 1,200.0 |function1_
||===
| 36.0% | 0.704928 | -- | -- | 9,613.0 |MPI_SYNC
||---
|| 25.8% | 0.505174 | 0.385130 | 76.2% | 9,596.0 |mpi_barrier_(sync)
|| 10.2% | 0.199537 | 0.199518 | 100.0% | 1.0 |mpi_init_(sync)
||===
| 4.0% | 0.078736 | -- | -- | 29,754.8 |MPI
||---
|| 2.3% | 0.045351 | 0.003531 | 7.3% | 9,596.0 |MPI_BARRIER
|| 1.1% | 0.021520 | 0.051295 | 71.6% | 8,756.9 |MPI_ISEND
|==

Finding Program Load Imbalance

26

© 2019 Cray Inc.

Visualizing Load Imbalance

27

© 2019 Cray Inc.

Visualizing Load Imbalance (2)

28

© 2019 Cray Inc.

MPI Rank Reordering

29

© 2019 Cray Inc.

MPI Rank Placement Strategies

0 1 2 34 5 6 7

Ø Distributed placement
Ø SMP style placement

0 2 4 61 3 5 7

Ø Folded rank placement

0 1 2 37 6 5 4

Ø User provided rank file

? ? ? ?? ? ? ?

30

© 2019 Cray Inc.

• Maximize on-node communication between MPI ranks

• Physical system topology agnostic

• Grid detection and rank re-ordering is helpful for programs with significant point-
to-point communication

• Relieve on-node shared resource contention by pairing threads or processes that
perform different work on the same node

• for example: computation with off-node communication

When Is Rank Re-ordering Useful?

31

© 2019 Cray Inc.

• CrayPat
• Available with sampling or tracing
• Include –g mpi when instrumenting program
• Run program and let CrayPat determine if communication is dominant, detect

communication pattern and suggest MPI rank order if applicable

• grid_order utility
• User knows communication pattern in application and wants to quickly create

a new MPI rank placement file
• Available when perftools-base module is loaded

MPI Rank Reorder – Two Interfaces Available

32

© 2019 Cray Inc.

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE

100.0% | 463.147240 | -- | -- | 21621.0 |Total
|--
| 52.0% | 240.974379 | -- | -- | 21523.0 |MPI
||---
|| 47.7% | 221.142266 | 36.214468 | 14.1% | 10740.0 |mpi_recv
|| 4.3% | 19.829001 | 25.849906 | 56.7% | 10740.0 |MPI_SEND
||===
| 43.3% | 200.474690 | -- | -- | 32.0 |USER
||---
|| 41.0% | 189.897060 | 58.716197 | 23.6% | 12.0 |sweep_
|| 1.6% | 7.579876 | 1.899097 | 20.1% | 12.0 |source_
||===
| 4.7% | 21.698147 | -- | -- | 39.0 |MPI_SYNC
||---
| 4.3% | 20.091165 | 20.005424 | 99.6% | 32.0 | mpi_allreduce_(sync)
||===
| 0.0% | 0.000024 | -- | -- | 27.0 |SYSCALL
|==

MPI Rank Order Observations

33

© 2019 Cray Inc.

MPI Grid Detection:

There appears to be point-to-point MPI communication in a 96 X 8
grid pattern. The 52% of the total execution time spent in MPI
functions might be reduced with a rank order that maximizes
communication between ranks on the same node. The effect of several
rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this
report and contains usage instructions and the Custom rank order
from the following table.

Rank On-Node On-Node MPICH_RANK_REORDER_METHOD
Order Bytes/PE Bytes/PE%

of Total
Bytes/PE

Custom 2.385e+09 95.55% 3
SMP 1.880e+09 75.30% 1
Fold 1.373e+06 0.06% 2

RoundRobin 0.000e+00 0.00% 0

MPI Rank Order Observations (2)

34

© 2019 Cray Inc.

Auto-Generated MPI Rank Order File
The 'USER_Time_hybrid' rank
order in this file targets
nodes with multi-core
processors, based on Sent
Msg Total Bytes collected
for:
#
Program:
/lus/nid00023/malice/craypat
/WORKSHOP/bh2o-
demo/Rank/sweep3d/src/sweep3
d
Ap2 File:
sweep3d.gmpi-u.ap2
Number PEs: 768
Max PEs/Node: 16
#
To use this file, make a
copy named MPICH_RANK_ORDER,
and set the
environment variable
MPICH_RANK_REORDER_METHOD to
3 prior to
executing the program.
#
0,532,64,564,32,572,96,540,8
,596,72,524,40,604,24,588
104,556,16,628,80,636,56,620
,48,516,112,580,88,548,120,6
12
1,403,65,435,33,411,97,443,9
,467,25,499,105,507,41,475
73,395,81,427,57,459,17,419,
113,491,49,387,89,451,121,48
3

6,436,102,468,70,404,38,412,
14,444,46,476,110,508,78,500
86,396,30,428,62,460,54,492,
118,420,22,452,94,388,126,48
4
129,563,193,531,161,571,225,
539,241,595,233,523,249,603,
185,555
153,587,169,627,137,635,201,
619,177,515,145,579,209,547,
217,611
7,405,71,469,39,437,103,413,
47,445,15,509,79,477,31,501

111,397,63,461,55,429,87,421
,23,493,119,389,95,453,127,4
85
134,402,198,434,166,410,230,
442,238,466,174,506,158,394,
246,474
190,498,254,426,142,458,150,
386,182,418,206,490,214,450,
222,482
128,533,192,541,160,565,232,
525,224,573,240,597,184,557,
248,605
168,589,200,517,152,629,136,
549,176,637,144,621,208,581,
216,613
5,439,37,407,69,447,101,415,
13,471,45,503,29,479,77,511
53,399,85,431,21,463,61,391,
109,423,93,455,117,495,125,4
87
2,530,34,562,66,538,98,522,1
0,570,42,554,26,594,50,602
18,514,74,586,58,626,82,546,

106,634,90,578,114,618,122,6
10
135,315,167,339,199,347,259,
307,231,371,239,379,191,331,
247,299
175,363,159,323,143,355,255,
291,207,275,183,283,151,267,
215,223
133,406,197,438,165,470,229,
414,245,446,141,478,237,502,
253,398
157,510,189,462,173,430,205,
390,149,422,213,454,181,494,
221,486
130,316,260,340,194,372,162,
348,226,308,234,380,242,332,
250,300
202,364,186,324,154,356,138,
292,170,276,178,284,210,218,
268,146
4,535,36,543,68,567,100,527,
12,599,44,575,28,559,76,607
52,591,20,631,60,639,84,519,
108,623,92,551,116,583,124,6
15
3,440,35,432,67,400,99,408,1
1,464,43,496,27,472,51,504
19,392,75,424,59,456,83,384,
107,416,91,488,115,448,123,4
80
132,401,196,441,164,409,228,
433,236,465,204,473,244,393,
188,497
252,505,140,425,212,457,156,
385,172,417,180,449,148,489,
220,481

131,534,195,542,163,566,227,
526,235,574,203,598,243,558,
187,606
251,590,211,630,179,638,139,
622,155,550,171,518,219,582,
147,614
761,660,737,652,705,668,745,
692,673,700,641,684,713,644,
753,724
729,732,681,756,721,716,764,
676,697,748,689,657,740,665,
649,708
760,528,736,536,704,560,744,
520,672,568,712,592,752,552,
640,600
728,584,680,624,720,512,696,
632,688,616,664,544,608,656,
648,576
762,659,738,651,706,667,746,
643,714,691,674,699,754,683,
730,723
722,731,763,658,642,755,739,
675,707,650,682,715,698,666,
690,747
257,345,265,313,281,305,273,
337,609,369,577,377,617,329,
513,529
545,297,633,361,625,321,585,
537,601,289,553,353,593,521,
569,561
256,373,261,341,264,349,280,
317,272,381,269,309,285,333,
277,365
352,301,320,325,288,357,328,
304,360,312,376,293,296,368,
336,344
258,338,266,346,282,314,274,

370,766,306,710,378,742,330,
678,362
646,298,750,322,718,354,758,
290,734,662,686,670,726,702,
694,654
262,375,263,343,270,311,271,
351,286,319,278,342,287,350,
279,374
294,318,358,383,359,310,295,
382,326,303,327,367,366,335,
302,334
765,661,709,663,741,653,711,
669,767,655,743,671,749,695,
679,703
677,727,751,693,647,701,717,
687,757,685,733,725,719,735,
645,759

35

© 2019 Cray Inc.

• Save grid_order output to file called MPICH_RANK_ORDER

• $ export MPICH_RANK_REORDER_METHOD=3

• Run non-instrumented binary with and without new rank order to check overall
wallclock time for performance improvements

• Can be used for all subsequent executions of same job size

Using New MPI Rank Order

36

© 2019 Cray Inc.

Documentation

37

© 2019 Cray Inc.

• Release Notes

• user@login> module help perftools-base/version_number

• User manual “Using the Cray Performance Measurement and Analysis Tools”
available at http://pubs.cray.com

• pat_help – interactive help utility on the Cray Performance toolset

• Man pages

Documentation

38

http://pubs.cray.com/

© 2019 Cray Inc.

• intro_craypat(1)
• Introduces the craypat performance tool
• Runtime environment variables (enable full trace, etc.)

• pat_build(1)
• Instrument a program for performance analysis

• pat_help(1)
• Interactive online help utility

• pat_report(1)
• Generate performance report in both text and for use with GUI

Man Pages

39

© 2019 Cray Inc.

• Cray performance tools offer functionality that reduces the time investment
associated with porting and tuning applications on new and existing Cray
systems

• Cray performance tools come with a simple interface plus a wealth of capability
when you need it for analyzing those most critical production codes

Summary

40

QUEST IONS?

